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Chapter 9: SCALING PISA-D COGNITIVE 
DATA 
INTRODUCTION 

The test design for PISA-D is similar to the one used for PISA. It is based on a variant of matrix 
sampling where each student is administered a relatively small subset of items from the total item 
pool. That is, different students answer different yet overlapping sets of items and equivalent 
amounts of data is collected on each item. This design is necessary to represent the broad 
measurement constructs with many more items than an individual student would be able to 
respond to in a testing session.  

But this design also makes it inappropriate to use any statistic based on the number of correct 
responses in reporting the survey results. Differences in total scores, or statistics based on them, 
among students who took different sets of items may be due to variations in difficulty of the test 
forms. Unless one makes very strong assumptions—for example, that the different test forms are 
perfectly parallel—the performance of two groups assessed in a matrix sampling arrangement 
cannot be directly compared using total-score statistics. Moreover, item-by-item reporting ignores 
the dissimilarities of proficiencies of subgroups to which the set of items was administered. Finally, 
using the average percentage of items answered correctly to estimate the mean proficiency of 
students in a given subpopulation does not provide any other information about the distribution 
of skills within that subpopulation (e.g., variances). 

The limitations of number or percent correct scoring methods can be overcome by using item 
response theory (IRT) scaling. When responding to a set of items requires a given skill, the response 
patterns should show regularities that can be modeled using the underlying commonalities among 
the items. This regularity can be used to characterise students as well as items in reference to a 
common scale, even if all students do not take identical sets of items. It also makes it possible to 
describe distributions of performance in a population or subpopulation and to estimate the 
relationships between proficiency and background variables as accurately as possible. 

In the following sections, a description of the analyses and the results obtained in PISA-D are 
provided. The methods and analyses used closely followed the ones used in PISA. Overviews of the 
data yield and data quality analyses, classical item analyses, IRT scaling, and population modeling 
methods used to produce plausible values needed for secondary analyses are also provided. 

DATA YIELD AND DATA QUALITY 

Before data were used for scaling and population modeling, different analyses were carried out to 
examine the quality of data and to ensure that data met the test design criteria. The following 
subsections give an overview of these analyses and their results. Overall, the data quality was 
confirmed, and data was approved for scaling.  
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Targeted sample size and data yield 

Targeted sample size  

The Main Survey assessment design for PISA-D covered the cognitive domains of Reading, 1 
Mathematics, and Science, with equal weights for each of the three domains (i.e., no major/minor 
domain distinction). Participating countries were required to sample a minimum of 150 schools 
with a target of 35 students per school for a total sample of approximately 5,250 students who 
were age 15. PISA-D was administered as a paper-based assessment (PBA) and was designed with 
the total testing time for measuring the three domains to be two hours for each student. Students 
responded to one out of 12 possible testing booklets, which consisted of four 30-minute clusters 
assembled from two of the three core domains, resulting in one hour of assessment time per 
domain, with a total of two hours of testing time per student. For the booklets containing the 
Reading domain, one Reading Components cluster was always placed in front of the Reading 
cluster. Within these clusters, a majority of items were selected from previous cycles of PISA but 
were complemented with existing materials from other surveys, including PISA for Schools, PIAAC 
(Programme for the International Assessment of Adult Competencies), the STEP Skills 
Measurement Program, and LAMP (Literacy Assessment and Monitoring Programme). 

Data yield  

Table 9.1 below shows the sample sizes and assessment languages for all seven participating 
countries. Note that a student was considered a “respondent” and was included in the analysis if 
the student responded to at least half of the cognitive items in his or her particular booklet in any 
domain. When less than half of the cognitive items were answered, the student had to respond to 
at least one cognitive item and possess data from the context questionnaire session. Due to 
population size and operational issues, not all countries reached the desired sample size. 

Table 9.1 Language, number of schools, sample size per country 

Country Language N of Schools N total 

Cambodia Khmer 170 5162 

Ecuador Spanish 173 5664 

Guatemala Spanish 191 5100 

Honduras Spanish 213 4773 

Paraguay Spanish 205 4510 

Senegal French 162 5193 

Zambia English 186 4213 

 
 

Table 9.2 presents the distribution of students per school. All countries met the technical standards 
of a minimum number of schools (150), weighted school response rate (85%), and weighted 
student response rate (80%).  

 

                                                        
1 Reading Components are included in this scale. 
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Table 9.2 Distribution of students per school 

Country 
Number of 

Schools 
Minimum # 
of students 

Mean # of 
students 

Median # of 
students 

Maximum # 
of students 

Number of 
schools with 
# of students 

< 15 

Ecuador 173 1 32.7 38 42 25 

Guatemala 191 2 26.7 30 42 40 

Honduras 213 1 22.4 25 40 67 

Paraguay 205 2 22 20 42 76 

Cambodia 170 2 30.4 36 41 28 

Senegal 162 1 32.1 36 40 17 

Zambia 186 1 22.7 24 40 51 

 

ITEM ANALYSIS 

Classical test theory statistics 

Classical item analyses were conducted on the items at both the national and international levels 
to identify any items performing as outliers, identify human- or machine-scoring issues, and 
identify other technical issues. Item and cluster level statistics based on observed and missing 
responses were provided and compared across cluster positions. These statistics were shared with 
countries and the OECD.  

The following statistics were computed:  

 item difficulties (proportion of correct responses, or P+)  

 frequencies of scores (number of students attempted, correct and incorrect responses, 
omitted items, not-reached items) 

 cluster scores (i.e., the total score within a cluster) of students with specified response 
types for a given item 

 point biserial correlations  

Statistics were compiled and examined at the aggregate level across countries and individually by 
country in order to identify outliers (single items that seemed to work differently across countries). 
Irregular cases, such as outliers or items functioning unexpectedly or with obvious scoring rule 
deviations, were examined. Proportion correct and missing rates of trend items were compared to 
results from prior PISA cycles whenever relevant.  
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Table 9.3 Example output for examining response distributions 

  
 

Table 9.3 is an example of classical response analysis outputs for an item. The first column identifies 
the item and includes its number within the cluster of items analysed together, the item code, and 
its type (MC for multiple choice). The part of the output identified as ITEM 5R (fifth item in the 
block of items analysed together; R for raw score or unscored item) provides statistics for each 
response option with an asterisk (*) indicating which response is correct (here, option 3) as well as 
the classical item statistics. The part of the output identified as ITEM 5 provides statistics for 
incorrect and correct answers (scored item) as well as the classical item statistics.  

Row identifiers in the second column indicate the type of statistic: 

1. N = number of responses for the given type, excluding those not reached 

2. Percent = percent of responses for the given type 

3. Mean Score = mean number correct score of the cluster for the given type 

4. Std. Dev. = standard deviation of the number correct score of the cluster for the given type 

5. RESP WT = response weight for the given type 

The response types are:  

1. NOT RCH (not reached) = students did not answer the given item or the subsequent items 
within that cluster 

2. OFF TSK (off task) = students did not answer the question in the expected manner 

3. OMIT (omit) = students did not answer the given question but answered at least one 
subsequent question 

4. 0 = incorrect responses 

5. 1 = correct responses 
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The values in the TOTAL column (third to the last column) are based on all categories except “NOT 
RCH”. For example, for Item 5 (PM800Q01S), Total is the sum of OFF TSK, OMIT, 0 (Wrong) and 1 
(Correct), that is, 1800 = 4 + 30 + 364 + 1402, which does not include NOT RCH, whose value is 28.  

The statistics shown in the last two columns of Table 9.3 are the following: 

1. R-biserial (R BIS) and R-polyserial (R POLY): R BIS is used for dichotomous items and is a 
statistic used to describe the relationship between performance on a single test item and a 
continuous criterion variable (total score on the cluster). It is an estimate of the correlation 
between the criterion cluster score and an unobserved normally distributed variable 
assumed to determine performance on the observed categorical item score. R POLY is used 
for polytomous items and is a generalisation of the biserial correlation for use with either 
dichotomous or polytomous items. This is the generalised form of the correlation with the 
criterion and the item score, where the item score is either (0, 1) or (0, 1, 2, 3….n) and the 
criterion is a continuous variable (total score on the cluster). 

2. Point biserial (PT BIS) and point-polyserial (PT POLY): PT BIS is used for dichotomous items 
and is the Pearson product moment correlation coefficient between the dichotomous item 
score and the total cluster score. For polytomous items, PT POLY is used. 

3. P+: This is the usual percent correct for a given item. 

4. Delta: This statistic is an index of item difficulty associated with the percent correct (P+). 
The P+ values are converted to z-scores and are then linearly transformed to an expected 
value of 13.0 and a standard deviation of 4.0. Deltas ordinarily range from 6.0 for a very 
easy item (approximately 95% correct) to 20.0 for a very hard item (approximately 5% 
correct), with 13.0 corresponding to 50% correct. 

5. ITEM WT: This value is the number of score levels for a scored item. For a raw item, the 
item weight is assigned a value of 0 to prevent the item from being double-counted in the 
overall cluster statistics. 

Table 9.4 provides an example of the breakdown of item score categories and biserial correlations 
by category as well as a summary of items that were flagged for surpassing certain thresholds (the 
thresholds are shown in Table 9.5). In this example, the last item in the image is flagged for having 
an omit rate of greater than 10%, which prompted further review. 
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Table 9.4 Example table providing summary item statistics 

 
 

 

Table 9.5 Flagging criteria for items in the item analyses 

 
Criteria for 

flagging items 

rbis/rpoly < 0.3 
P+ 0.20 > P+ > .90 
Omit >10% 
Off task >10% 
Not-Reached >10% 

 

The delta statistic, polyserial correlation, and B* are part of the standard output from the software 
used for the classical item analysis; however, they may not be as familiar as other statistics such as 
P+, R-Bis, percent not reached, and percent of omitted responses. Therefore, countries were 
advised to use the latter statistics when evaluating the quality of items for their sample. 

 

Position effects 

Item position effects due to each cluster appearing in different positions across test forms are a 
common issue of concern in large-scale assessment programs because substantial position effects 
can increase measurement error and introduce bias. The PISA-D Main Survey design balances 
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cluster position in order to control for the potential impact of item position on scores. 
Nevertheless, it is important to monitor the extent to which position effects impact various item 
statistics to ensure that these effects are tolerable. We examined the overall cluster position 
effects (weighting individual countries equally) in terms of: 1) proportion of correct responses by 
cluster (average P+), and 2) rate of omitted responses by cluster (omission rate). Note that “not 
reached” responses were excluded in calculating the proportion of correct responses and omitted 
rates. 

Table 9.6 presents position effects via proportion correct by cluster for PISA-D along with relevant 
previous assessments. In order to establish a reference point for examining the magnitude of 
position effects, average P+ values were computed at the cluster level using PBA data from both 
PISA 2009 and 2012, and CBA (computer-based assessment) data from PISA 2015. For two PISA 
PBA cycles, there was an average decrease of 0.04 to 0.08 points in the average P+ metric between 
cluster positions 1 and 4, depending on the domain. For the PISA 2015 Main Survey CBA, the 
average decrease was only about 0.02 to 0.06 points in P+ values between cluster positions 1 and 
4, depending on the domain. Position effects in PISA-D were slightly larger than those in PISA 2015, 
ranging between 0.03 and 0.08, but are similar to that of other PBA cycles.  

Table 9.6 PISA 2009, 2012 PBA and 2015 CBA average proportion correct across clusters 
and across countries 

 Domain Position 1 Position 2 Position 3 Position 4 
Position 4-
Position 1 

2009 
PBA 

Mathematics 0.411 0.402 0.385 0.371 -0.040 

Reading 0.584 0.559 0.534 0.501 -0.083 

Science 0.490 0.478 0.457 0.435 -0.055 

2012 

PBA 

Mathematics 0.443 0.435 0.413 0.397 -0.046 

Reading 0.595 0.561 0.551 0.512 -0.083 

Science 0.526 0.515 0.493 0.468 -0.058 

2015 

CBA 

Mathematics 0.426 0.416 0.411 0.403 -0.023 

Reading 0.587 0.548 0.554 0.522 -0.065 

Science Trend 0.493 0.465 0.476 0.452 -0.042 

 Science New 0.459 0.428 0.445 0.415 -0.044 

PISA-D 
PBA 

Mathematics 0.296 0.290 0.278 0.257 -0.039 

Reading 0.410 0.391 0.364 0.329 -0.081 

Reading 
Components* 0.816 NA 0.807 NA -0.010 

Science 0.385 0.382 0.366 0.354 -0.031 
* For Reading Components, the difference is taken between position 1 and 3 because these reading components 
clusters were always placed in either Position 1 or Position 3. 

The omission rates at different positions for all PISA-D countries were analysed to further examine 
the quality of data affected by position. The omission rates for the PISA-D Main Survey are shown 
in Table 9.7 for all domains and cluster positions. These rates do not include “not reached” items. 



PISA FOR DEVELOPMENT TECHNICAL REPORT 8 Chapter 9 

 

 

Table 9.7 PISA-D PBA average omission rates across clusters and across countries 

 Position 1 Position 2 Position 3 Position 4 
Position 4-
Position 1* 

Mathematics 0.112 0.108 0.127 0.150 0.038 

Reading 0.095 0.105 0.124 0.161 0.065 

Reading 
Components 0.025 NA 0.023 NA -0.002 

Science 0.070 0.070 0.093 0.113 0.043 

 

The omission rates in positions 3 and 4 are higher than those in positions 1 and 2. This may be an 
indication that some students spent considerably more time on clusters 1 and 2, leaving less time 
for clusters 3 and 4.   

Item correlations 

The IRT models used for scaling assume conditional independence among items. If conditional 
independence does not occur for some of the items, the slope parameters for those items and the 
test reliability would be overestimated. To monitor the conditional dependencies among items, 
item-by-item correlations were examined. Relatively high item-by-item correlations would suggest 
that dependencies exist among those items, which may be caused by, for example, too much 
similarity among items (e.g., repetitive items), information in one item providing a clue to solving 
another, or information in the stimulus common to a set of items that is critical to correctly 
responding to more than one of the set items. When the local independence assumption is met, a 
similar level of correlation is expected among all the item pairs within a cluster, and no distinctive 
pattern can be discerned. In large-scale assessments, low to medium correlations are typically 
expected as items within a domain are expected to collectively contribute to the test information 
and to form a common scale. When interpreting the magnitude of correlations, within-cluster 
correlations can be compared against the across-cluster correlations. Given that data have 
dichotomous (0,1) or polytomous (0,1,2) scores, the Spearman’s rho statistic was used to estimate 
a rank-based measure of association. This statistic is known to be robust and has been 
recommended for data that does not necessarily follow a bivariate normal distribution. 

 

Table 9.8 summarises the distribution of averages of item-by-item correlations across all countries: 
within the Main Survey cluster as well as across clusters for each domain (Mathematics, Reading, 
Reading Components, and Science). In each domain, there were no item pairs with problematic 
item correlations at each country level and across countries.  
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Table 9.8 Distribution of averages of item-by-item correlations across all countries in each 
domain 

Domain Cluster Mean Minimum 
10th 

Percentile 

90th 
Percentile 

Maximum 

Mathematics 

M1 0.166 0.027 0.078 0.259 0.342 

M2 0.145 0.015 0.066 0.246 0.363 
M3 0.188 0.034 0.110 0.282 0.414 

M4 0.135 -0.035 -0.001 0.276 0.345 

Overall 0.156 -0.067 0.055 0.269 0.434 

Reading 

R1 0.153 0.001 0.062 0.236 0.530 

R2 0.167 0.057 0.081 0.261 0.413 

R3 0.167 0.013 0.069 0.260 0.347 

R4 0.169 0.024 0.071 0.278 0.374 

Overall 0.156 -0.009 0.068 0.244 0.530 

Reading 

Components 

RC1 0.195 -0.007 0.052 0.371 0.484 

RC2 0.176 -0.053 0.052 0.313 0.473 

RC3 0.132 -0.088 0.019 0.253 0.511 

RC4 0.176 0.000 0.054 0.300 0.378 

Overall 0.172 -0.088 0.047 0.316 0.511 

Science 

S1 0.122 0.004 0.057 0.191 0.307 

S2 0.093 0.012 0.047 0.153 0.284 

S3 0.098 -0.008 0.036 0.169 0.231 

S4 0.098 -0.017 0.035 0.163 0.386 

Overall 0.101 -0.034 0.037 0.176 0.386 

 

Figures 9.2, 9.3, 9.4, and 9.5 visualise the item-by-item correlation for all items in each domain. 
These figures illustrate that similar correlations were observed within each cluster, and no cluster 
stood out in terms of dependencies among items. For Reading Components, relatively higher 
correlations are represented by darker shades. High correlations were not seen as problematic 
here, as they sometimes occur when very difficult or very easy items are located adjacently, and 
Reading Components items were designed to be very easy. 
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Figure 9.2  

Item-by-item correlation for Math 
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 Figure 9.3  

Item-by-item correlation for Reading  
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 Figure 9.4  

Item-by-item correlation for Reading Components 
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Max 
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 Figure 9.5  

 Item-by-item correlation for Science  

 
 

SCALING METHODS IN PISA-D 

This section describes the implementation of the different steps of IRT scaling and population 
modeling analyses of the PISA-D Main Survey data. First, the national and international item 
calibration is described. Then, the implementation of the population model and the computation 
of plausible values are described. In particular, the procedures utilised to link the scales to PISA and 
across PISA-D participating countries, are illustrated.  

Scaling and analyses of the PISA-D data were carried out separately for each of the cognitive 
domains:  Reading (together with Reading Components), Mathematics, and Science. By creating a 
separate scale for each domain, it remains possible to explore potential differences in 
subpopulation performance across these skills. The population model was carried out separately 
for each country.  

The IRT models for scaling in PISA-D  

The primary goal of the PISA-D scaling is to provide a reliable and valid link to the PISA 2015 scale 
so that PISA-D participating countries can be located on a comparable scale. For all three cognitive 
domains (Math, Reading and Reading Components, and Science) in the PISA-D Main Survey, 
comparability was established 1) to the PISA 2015 Main Survey, and 2) across the PISA-D 
participating countries.  

Mean 

Min 

Max 
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The IRT scaling follows the procedures used in PISA 2015 and uses the same unidimensional IRT 
models: the two-parameter-logistic model (2PLM; Birnbaum, 1968) for dichotomously scored 
responses and the general partial credit model (GPCM; Muraki, 1992) for items with more than 
two ordered response categories.  

The 2PLM is a generalisation of the Rasch model. Similar to the Rasch model, the 2PLM assumes 
that the probability of response x to item i by a respondent depends on the difference between 
the respondent’s proficiency θ and the difficulty of the item difficulty, 𝛽𝑖. But in addition, the 2PLM 
allows the association between this difference and the response probability, for every item, to be 
able to depend on an additional item discrimination parameter (𝛼𝑖), characterising the sensitivity 

of the item to proficiency. With the 2PLM, the response probability to an item is given as a function 
of this person parameter and the two item parameters, and it can be written as:  

𝑃(𝑥𝑖𝑗 = 1|𝜃, 𝛽𝑖, 𝛼𝑖) =
exp⁡(𝐷𝛼𝑖(𝜃 − 𝛽𝑖))

1 + exp⁡(D𝛼𝑖(𝜃 − 𝛽𝑖))
 (9.1) 

where D is a constant of arbitrary sise, often either 1.0 or 1.7, depending on the parameterisation 
used in the software implementation. In the case of PISA-D, same as PISA 2015 Main Survey, a 

value of 1.7 is used. Note that, for i > 0.0 this is a monotone increasing function with respect to 
θ; that is, the conditional probability of a correct response increases as the value of θ increases. 
One important special case is when 𝛼𝑖 = 1.0/𝐷 for all items, in which case we can recognise the 
Rasch model as a special case of the 2PLM. This means that the 2PLM does not force a difference 
from the Rasch model; it only differs from the model if the optimal estimates for the slope 
parameter are different across items. 

The GPCM (Muraki, 1992), like the 2PLM, is a mathematical model for responses to items with two 
or more ordered response categories. While the 2PLM is suitable for dichotomous responses only, 
the GPCM can be used with polytomous and dichotomous responses. The GPCM reduces to the 
2PLM when applied to dichotomous responses. For an item i with mi+1 ordered categories, the 
model equation of the GPCM can be written as: 

𝑃(𝑥𝑖 = 𝑘|𝜃, 𝛽𝑖, 𝛼𝑖 , 𝑑𝑖) =
exp{∑ D𝛼𝑖⁡(𝜃 − 𝛽𝑖 + 𝑑𝑖𝑟)

𝑘
𝑟=1 }

∑ exp{∑ D𝛼𝑖⁡(𝜃 − 𝛽𝑖 + 𝑑𝑖𝑟)
𝑢
𝑟=1 }𝑚𝑖

𝑢=0

 (9.2) 

where di is a vector of category threshold parameters. 

As indicated earlier, a central assumption of most IRT models is conditional independence 
(sometimes referred to as local independence). Under this assumption, item response probabilities 
depend only on θ and the specified item parameters—there is no dependence on any demographic 
characteristics of the students, responses to any other items presented in a test, or the survey 
administration conditions. Another important assumption made that is consistent with the 
assessment framework is that the primary (often single) score for each domain measured can be 
accounted for by a dominant latent variable, θ, (unidimensionality). When these assumptions are 
satisfied, the unidimensional IRT models just described can be used. Then the joint probability of a 
particular response pattern 𝒙 = (𝑥1, … , 𝑥𝑛) across a set of n items can be expressed as follows.  
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𝑃(𝒙|𝜃, 𝜷, 𝜶) =∏𝑃𝑖(𝜃)
𝑥𝑖

𝑛

𝑖=1

(1 − 𝑃𝑖(𝜃))
1−𝑥𝑖 (9.3) 

When replacing the hypothetical response pattern with the scored observed data, the above 
function can be viewed as a likelihood function that is to be maximised with respect to the item 
parameters. To do this, it is assumed that students provide their answers independently of one 
another and that the student’s proficiencies are sampled from a distribution, 𝑓(𝜃). The likelihood 
function is therefore characterised as: 

𝑃(𝑿|𝜷,𝜶) =∏∫(∏𝑃𝑖(𝜃)
𝑥𝑖𝑗

𝑛

𝑖=1

(1 − 𝑃𝑖(𝜃))
1−𝑥𝑖𝑗)𝑓(𝜃)𝑑𝜃

𝐽

𝑗=1

 (9.4) 

Given a scored item response dataset and a choice of item response models (here a mixture of 
2PLM and GPCM for dichotomous and polytomously scored items), the item parameters and the 
person latent traits can be estimated by maximising this function. 

In order to ensure that the IRT models used provide adequate fit to the observed data, different 
types of model fit checks can be applied. One of these checks is the evaluation of differential item 
functioning (DIF) to determine whether, after taking differences in ability into account, items are 
harder or easier and/or more or less discriminating for a particular group when compared to the 
common or the fixed item parameters. More specifically, for each item, the empirical item 
characteristic curves (ICC) for each country were compared to the expected ICC given the common 
item parameter based on the total sample or the fixed parameters, as is the case for PISA-D. 
Noticeable differences between empirical and expected ICCs for a certain group or for all groups 
would be evidence of DIF. Following the same approach as used in PISA 2015, the mean deviation 
(MD) and the root mean square deviation (RMSD) indices were computed to quantify the 
magnitude and direction of DIF. While MD is sensitive to deviations in item difficulty, RMSD is 
sensitive to the deviations in both item difficulty and item.  

Items in PISA-D that showed deviations from the common PISA item parameters were assumed to 
work differently in PISA-D and, therefore, to possibly harm the link to PISA. Items that showed 
deviations from the newly estimated common item parameters in PISA-D were assumed to work 
differently in certain countries. Poorly fitting items were identified using an RMSD > 0.15, and an 
|MD| > 0.15 criterion, where a value of 0 indicates no discrepancy (in other words, a perfect fit of 
the model). It was assumed for such items that the common item parameters were not 
appropriate; group-specific unique item parameters were estimated in a second step. Group-
specific item parameters (i.e., national item parameters) for items exhibiting group-level DIF in the 
international calibration were estimated to reduce potential bias introduced by these deviations. 
The approach of using country-specific item parameters was favored over dropping the group-
specific item responses for these items from the analysis. While the items with country DIF that 
were treated in this way no longer contribute to the international set of comparable responses, 
they continue to contribute to the reduction of measurement uncertainty for the specific country. 
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In the subsequent step, unique item parameters were estimated to account for country-specific 
deviations for a small subset of items. This involved a close monitoring of the IRT scaling for item-
by-country interactions and allowing country-specific item parameters only in instances where 
substantial deviations were identified. This procedure takes measurement error into account, that 
is, it considers that some items work differently in certain countries. The common and unique item 
parameters were estimated using a mathematical algorithm that still allows us to estimate all item 
parameters in relation to one another, and thus, common and unique item parameters were on 
the same latent scale. Having a large number of common item parameters supports the 
comparability of the scales across the countries and assessments, while having only a few unique 
item parameters only reduces the measurement error further and does not affect the 
comparability of scales. 

The software used for item calibration, mdltm (von Davier, 2005), implements an algorithm that 
monitored DIF measures, which automatically generated a suggested list of group-specific item 
treatments. This algorithm grouped similar deviations of subgroups so that unique parameters 
were assigned to either an individual country or multiple countries that showed the same level and 
direction of deviation. 

Extensive descriptions of the methodologies and procedure are provided in the following 
references. The analyses of the PISA-D Main Survey and PISA 2015 Main Survey follow best 
practices outlined in, for example, Yamamoto and Mazzeo (1992), Mislevy and Sheehan (1987), 
Glas and Verhelst (1995), and Adams, Wilson, and Wu (1997). More recent overviews of the 
different aspects of the methodology can be found in von Davier, Sinharay, Oranje, and Beaton 
(2006), Glas and Jehangir (2014), Weeks, von Davier, and Yamamoto (2014), von Davier and 
Sinharay (2014), and Mazzeo and von Davier (2014). The methods used in PISA, as well as other 
assessments, are based on models originally developed within the framework of IRT that have 
evolved into very flexible approaches for the analysis of large-scale, multilevel categorical data 
(e.g., Skrondal and Rabe-Hesketh, 2004; von Davier and Yamamoto, 2004, 2007; Adams, Wu, and 
Carstensen, 2007). The approach taken for the PISA 2015 analysis is a model that combines features 
of the Rasch model/PCM and the 2PLM/GPCM. This more general model was applied to the PISA 
2015 Field Trial and Main Survey data. In order to account for cultural and language differences in 
the multiple populations tested, procedures outlined in Glas and Verhelst (1995), Yamamoto 
(1997), Glas and Jehangir (2014), and Oliveri and von Davier (2011, 2014) were applied. The specific 
procedure used for PISA 2015 is described below in more detail. Based on the research studies just 
cited, the approach can be expected to help to retain linking items across modes or from prior 
assessments that would otherwise be excluded from the trend measure (the more linking items 
with good fit across groups, the more stable the link becomes). 

Developing common scales between PISA-D and PISA 

PISA-D was administered as a PBA linked to PISA, which means that a majority of items were 
selected from previous cycles of PISA but are complemented with existing materials from surveys 
including PISA for Schools, PIAAC, STEP, and LAMP. There were no new cognitive items developed 
for PISA-D. Within these clusters, at least half of the items were trend items from PISA. The rest 
were from different existing surveys different from PISA 2015.  
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Following the PISA 2015 Main Survey procedures, linking to PISA 2015 was established through 
multiple group IRT models (concurrent calibration) with fixed item parameter linking and the 
assumption of equal item parameters across groups. Linking items (trend PISA items for 
Mathematics, Reading, and Science as well as new Science items) were fixed to the common item 
parameters obtained from the PISA 2015 Main Survey to evaluate the functioning of items. While 
trend items were fixed to item parameters from the PISA 2015 PBA items, new Science items were 
fixed to item parameters from the PISA 2015 CBA items, since these items exist in computer-based 
format only in PISA 2015 (and were adjusted to a paper-based format for the PISA-D). For items 
coming from other (non-PISA) sources and items that were adapted for PISA-D (e.g., items that 
were changed to include partial credit score), item parameters were estimated. For these items, 
equality constraints were imposed so that common item parameters were estimated across the 
seven PISA-D countries. The scaling was carried out separately for each of the cognitive domains 
(Mathematics, Reading, and Science), and Reading Components items were scaled together with 
Reading items.  

Table 9.9 gives an overview of the sources of items used in the PISA-D Main Survey cognitive 
assessment and how they were treated. PISA 2015 items (PBA items from PISA 2015 Mathematics, 
Reading, and Science, and a handful of CBA items from PISA 2015 Science) serve as linking items to 
construct a PISA-D scale that is comparable to the PISA 2015 scale. The PISA-D Main Survey 
cognitive assessment followed the same scoring guidelines and procedures as those applied in the 
PISA 2015 Main Survey for the paper-based assessment in order to maintain comparability 
between the two studies. Among the PISA trend items, partial credit scores were added (i.e., 
response categories from 2 to 3) for some of the items in Mathematics, Reading, and Science to 
obtain a more precise measurement of the lower end of the proficiency scale for PISA-D. These 
items for which partial credit scores were applied were not able to serve as linking items because 
the same item parameters as the PISA 2015 could not be used for scaling. Items from other sources 
(PISA for Schools, PIAAC, and LAMP) were not considered linking items. Taken together, in 
Table 9.6, linking items are shaded (i.e., source is “PISA 2015 Trend/New” and treatment is “fixed”), 
which constituted 49.2% in Mathematics, 77.3% in Reading, and 65.2% in Science.  

The items for which partial credit scores were added are listed in Table 9.10. In the domain of 
Science, two more PISA 2015 New items were not fixed but estimated because those two New 
items were excluded in the PISA 2015 Main Survey data analysis; thus, no item parameters were 
available to be fixed in the scaling.  
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Table 9.9 Items in PISA-D by source and treatment 

Mathematics Link/Anchor Items Estimated Total 

PISA 2015 PBA 31 8 39 
PISA for Schools  11 11 

PIAAC  13 13 
Total 31 32 63 

Reading Link/Anchor Items Estimated Total 

PISA 2015 PBA 51 2 53 
PISA for Schools  4 4 

LAMP  5 5 
PIAAC  4 4 
Total 51 15 66 

Science Link/Anchor Items Estimated Total 

PISA 2015 PBA 37 8 45 
PISA 2015 CBA 6 4 10 

PISA for Schools  11 11 
Total 43 23 66 

 

Table 9.10 Items for which partial credit scores were added for the PISA-D 

Domain Item Item Format 

Math (8 items) PM192Q01S 

PM464Q01S 

PM948Q03A 

PM496Q01S 

PM273Q01S 

PM919Q01A 

PM949Q01S 

PM411Q01A 

Complex Multiple Choice 

Open Response - Human Coded 

Open Response - Human Coded 

Complex Multiple Choice 

Complex Multiple Choice 

Open Response - Human Coded 

Complex Multiple Choice 

Open Response - Human Coded 

Reading (2 items) PR404Q07AS 
PR432Q06AS 

Complex Multiple Choice 

Complex Multiple Choice 

Science (10 items) PS638Q02AS* 

PS638Q04S* 

PS415Q08S 

PS498Q02S 

PS413Q04S 

PS466Q01S 

PS478Q02S 

PS527Q01S 

PS527Q04S 

Complex Multiple Choice 

Complex Multiple Choice 

Complex Multiple Choice 

Complex Multiple Choice 

Complex Multiple Choice 

Complex Multiple Choice 

Complex Multiple Choice 

Complex Multiple Choice 

Complex Multiple Choice 
PS408Q04S Complex Multiple Choice 

* Two science items were newly developed for the PISA 2015 Main Survey; thus, these CBA (computer-
based assessments) items were adapted to PBA items for PISA-D and administered as PBA items.  
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National and international item calibration 

Because the samples for the PISA-D Main Survey came from populations with somewhat different 
characteristics, the calibration procedure needed to take into account the possibility of interactions 
between the samples and the items that were used to produce estimates of the item parameters. 
For this reason, a multiple-group IRT model, treating each country as a distinctive group, was 
estimated using a mixture of normal population distributions (one for each sample) where item 
parameters were generally constrained to be equal across groups with a unique mean and variance 
for each country. The moments of these distributions (i.e., mean and variance) were updated for 
every step in the iterations of the item parameter estimation.  

The item calibration was completed in two consecutive steps. First, linking to PISA 2015 was 
established through multiple-group IRT models with fixed item parameter linking (concurrent 
calibration) and assumed equal item parameters across groups for estimating new item 
parameters. More specifically, linking items (trend PISA items for Mathematics, Reading, and 
Science, as well as New Science items) were fixed to the common item parameters obtained from 
the PISA 2015 Main Survey to evaluate item functioning.  

In the subsequent step, unique item parameters were estimated to account for country-specific 
deviations for a small subset of items (see the next subsection for details on country-specific item 
parameter determination). This involved a close monitoring of the IRT scaling for item-by-country 
interactions and allowing country-specific item parameters only in instances where substantial 
deviations were identified. This procedure takes measurement error into account, that is, it 
considers that some items work differently in certain countries. For items coming from non-PISA 
sources and for items that were adapted for PISA-D (e.g., items that were changed to include partial 
credit score), equality constraints were imposed so that common item parameters were estimated 
across the seven PISA-D countries, and the scaling was carried out separately for each of the 
cognitive domains. The common and unique item parameters were estimated using a 
mathematical algorithm that still allowed us to estimate all item parameters in relation to one 
another, and thus, common and unique item parameters were mapped onto the same latent scale. 
Having a large number of common item parameters supports the comparability of the scales across 
the countries and assessments, while having only a few unique item parameters reduces the 
measurement error further and does not affect the comparability of scales.  

For the domain of Reading, additional steps have been followed to establish a common scale 
together with Reading Components items. Reading Components items were introduced in PISA-D 
to better describe lower end proficiency. First, only Reading items (66 items) were scaled fixing 
linking item parameters to the common item parameters obtained in PISA 2015 Main Survey. 
Second, Reading items were finalised by evaluating the item fit statistics and by allowing a small 
number of country-specific item parameters if needed. This is to ensure that the Reading scale is 
not to be affected by Reading Components items. Lastly, Reading Components items were added 
to the finalised Reading scale and similar steps were followed to allow unique item parameters for 
Reading Components item parameters. Those steps were as follows: Start with common item 
parameters for all Reading Components items, evaluate the item fit statistics for each item-by-
country combinations, and allow small number of country-specific item parameters if needed.  
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In PISA-D, as with PISA 2015, omitted responses prior to a valid response were treated as incorrect 
responses because a random response to an open-ended item would almost certainly result in a 
wrong answer; in contrast, omitted responses at the end of each of the two one-hour test sessions 
were treated as not reached/not administered. In the latter case, impact on the IRT scaling was 
avoided by excluding these responses when the likelihood function was calculated. However, the 
number of not-reached items was introduced as a covariate in the latent regression model, so it is 
part of the proficiency estimation in the generation of plausible values (see the section titled 
“Latent regression model for population modeling”).  

 

Handling of item-by-country interactions 

Given that international assessments are translated into multiple target languages, item-by-
country interactions are a potential threat to validity (e.g., some terms may be harder to translate 
into a specific target language, and, in the process, the way or the content the source item 
measures may be altered). As such, some items in some countries may function somewhat 
differently from how the item generally functions in the majority of countries or groups, or how 
the item generally functions in the majority of participating countries. Therefore, the consistency 
of item parameter estimates across countries was of particular interest to achieve equivalent and 
comparable measurement across countries as well as between the PISA and PISA-D scales.  

If a test measures the same latent trait in a given domain in all groups, the items should have the 
same relative difficulty or, more precisely, would fall within the interval defined by the standard 
error on the item parameter estimate (i.e., the confidence interval). In cases where common item 
parameters are not appropriate for certain items in certain groups (item-by-country interactions) 
as determined by group-specific item-fit statistics (MD and RMSD), unique item parameters were 
estimated in a stepwise procedure.  

Given specifications (minimum sample size and maximum and minimum threshold values), items 
requiring unique parameters based on DIF detection were automatically identified by the mdltm 
software. If an item was identified for DIF and more than one group deviated from the 
international/common parameters in the same way (showing DIF in the same direction), the 
algorithm assigned item parameters common to those groups, but different from the international 
parameters. For example, if two groups (e.g., two countries in PISA-D) showed poor item fit for the 
same item in the international/common calibration, and in the same direction, both groups 
received the same unique item parameter estimated for these two groups but different from the 
rest of the groups (note that the term “unique item parameters” in this report is used for both 
cases: one group that receives a unique group-specific item parameter, and more than one group 
that receives the same unique item parameter that is different from the international/common 
item parameter). If an item showed poor fit to a different direction in different groups (e.g., 
negative MD vs. positive MD), unique group-specific item parameters were used for further 
analysis. Thus, PISA-D allowed for different sets of item parameters to improve model fit and 
optimise the comparability of groups and countries. 

To identify misfitting items, fit statistics were estimated using the MD and the RMSD (see section 
titled “The IRT models for scaling in PISA-D” for more information on these statistics). Poorly fitting 
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items were identified using an RMSD > 0.15 criterion and an |MD| > 0.15 criterion (a value of 0 
indicates no discrepancy; in other words, a perfect fit of the model). The identification of poorly 
fitting items and the replacement of international item parameters with group-specific (unique) 
parameters was carried out using an automatic algorithm in mdltm. Thus, the international and 
national calibrations were conducted simultaneously for all groups, so all of the estimated item 
parameters (international and unique) are located on a common scale.  

Typically, only a small number of unique item parameters are assigned. The vast majority of items 
are expected to fit well for all, or nearly all, countries using international/common item 
parameters. Chapter 12 provides an overview of the percentage of group-specific item parameters 
per country. 

LATENT REGRESSION MODEL FOR POPULATION MODELING 

This section reviews the population (or conditioning) model—a combination of an IRT model and a 
latent regression model—employed in the analyses of the PISA-D data and explains the multiple 
imputation or “plausible values” methodology that aims to increase the accuracy of the estimates 
of the multivariate proficiency distributions for various subpopulations and the population as a 
whole.  

Individual cognitive skills tests are concerned with accurately assessing the performance of 
individual students for the purposes of diagnosis, selection, or placement. The accuracy of these 
measurements can be improved (i.e., reducing the amount of measurement error) by increasing 
the number of items administered to the individual that measure the same skill. Thus, individual 
achievement tests containing more than 70 items are common. Because the uncertainty associated 
with each estimated proficiency θ is negligible, the distribution of proficiency or the joint 
distribution of proficiency with other variables can be approximated using individual proficiency 
estimates. But when analysing the distribution of proficiencies for populations or subpopulations, 
more efficient estimates can be obtained from a matrix-sampling design.  

In international large-scale assessments (ILSAs) such as PISA, test forms are kept relatively short to 
minimise individuals’ response burden. This is important since ILSAs are low-stakes assessments 
that do not provide feedback and do not entail consequences for the individual test taker. At the 
same time, ILSAs aim to achieve broad coverage of the tested constructs. In this context, the full 
set of items is organised into different, but linked, test forms; each individual receives only one 
form. Thus, the survey solicits relatively few responses from each student on any one domain while 
maintaining a wide range of content representation when responses are aggregated. The 
advantage of estimating population characteristics more efficiently is offset by the inability to 
reliably measure and make precise statements about individuals’ performance on a single domain. 
As a consequence, point estimates of proficiency that are (in some sense) optimal for each student 
could lead to seriously biased estimates of population characteristics (Wingersky, Kaplan, and 
Beaton, 1987).  

In the case of ILSAs, improved proficiency distributions are derived that are based on both the 
relatively small number of responses to items in the booklet, and responses to background 
questions administered in the student questionnaire. In addition, the covariance between skill 
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domains (e.g., the PISA core domains, Mathematics, Reading, and Science) is utilised to further 
improve the estimates of skill distributions. This approach allows for estimation of proficiency 
distributions given responses received on all domains in the test booklet and the student 
questionnaire. The “plausible value” methodology uses these proficiency distributions and 
accounts for error (or uncertainty) at the individual level by using multiple imputed proficiency 
values (plausible values) rather than assuming that this type of uncertainty is zero. Retaining this 
component of uncertainty requires that additional analysis procedures be used to estimate student 
proficiencies. The population model used for the PISA-D is essentially same as the PISA 2015 Main 
Survey: incorporated test responses (responses to the cognitive items) as well as variables 
measured by the student context questionnaire (e.g., academic and nonacademic activities, and 
attitudes), which serve as covariates, in the computation of plausible values (von Davier, Sinharay, 
Oranje, and Beaton, 2006). Ten plausible values are randomly selected for each student. The 
combined model requires the estimation of the IRT measurement model, which provides 
information about test performance, and the latent regression, which provides information about 
the extent to which student background information, can predict proficiency. The estimation of 
this combined model is carried out as follows:  

1. Item calibration based on IRT (scaling): The responses consist of dichotomously and 
polytomously scored values. These responses are used to calibrate the test and provide item 
parameter estimates for the (cognitive) test items. The 2PLM is fitted for dichotomous item 
responses and the GPCM is fitted for polytomous item responses. Note that for a subset of 
trend items, the Rasch model and the PCM continue to be fitted for dichotomous and 
polytomous responses, respectively, to maintain consistency with prior PISA cycles.  

2. Population modeling using latent regressions: The population model assumes that item 
parameters are fixed at the values obtained in the calibration stage. Taking the item parameters 
estimates from item calibration, a latent regression model is fitted to the data to obtain 

regression weights () and a residual variance-covariance matrix for the latent regression ().  

3. Plausible value generation: Ten plausible values (Mislevy and Sheehan, 1987; von Davier, 
Gonzalez and Mislevy, 2009) are drawn for all students using the item parameter estimates 

from the item calibration stage and the estimates of  and  from the latent regression model. 

In the latent regression model, the distribution of the proficiency variable, θ, is assumed to depend 
on the cognitive item responses, X, as well as background variables, Y, derived from responses 
obtained from the context questionnaire (e.g., gender, country of birth, reading practices, etc.). 
The item parameters from the calibration stage and the estimates from the regression analysis are 
both needed to generate plausible values. 

A considerable number of background variables (predictors) are usually collected in ILSAs. Principal 
components accounting for a large proportion of the variation in the context questionnaire 
variables were used in the latent regression instead of the observed context questionnaire 
variables. The use of principal components serves to retain information for students with missing 
responses to one or more background variables. For PISA-D, components for each country that 
accounted for 80% of the variance were used in order to avoid numerical instability due to potential 
overparameterisation of the model. If the number of principal components that explain 80% of the 
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variance exceeded a certain threshold per country (i.e., 5% of raw sample size), it was chosen to 
use the number of principal components based on the 5% of the sample size. This was done to 
explain as much variance as possible while at the same time avoiding overparameterisation of the 
model. For the regression of the background variables on the proficiency variable it was assumed 
that: 

θ  N (y, ) (9.5) 

The latent regression parameters  and  were estimated conditional on the previously 
determined item parameter estimates (from the item calibration stage). Γ is the matrix of 
regression coefficients and Σ is a common residual variance-covariance matrix. 

The latent regression model of  on Y with  = (sl, s = 1,…,S; l = 0,…,L), Y = (1, y1, …, yL)t, and  = 

(1, …, S)t can be described as follows: 

s = s0 + s1y1 + … + sLyL + εs (9.6) 

where εs is an error term for the assessment skill s. 

 

The residual variance-covariance matrix can then be estimated using the equation:  

 = t - (YY t)t (9.7) 

Plausible values for each student j are drawn from the conditional distribution:  

𝑃(𝜃𝑗|𝒙𝑗 , 𝒚𝑗 , Γ, Σ) (9.8) 

Using standard rules of probability, the conditional probability of proficiency can be represented: 

𝑃(𝜃𝑗|𝒙𝑗 , 𝒚𝑗 , Γ, Σ) ∝ 𝑃(𝒙𝑗|𝜃𝑗 , 𝒚𝑗, Γ, Σ)𝑃(𝜃𝑗|𝒚𝑗, Γ, Σ) ⁡= 𝑃(𝒙𝑗|𝜃𝑗)𝑃(𝜃𝑗|𝒚𝑗, Γ, Σ) (9.9) 

where θj is a vector of scale values (these values correspond to performance on each of the skills), 

P(xj|θj) is the product over the scales of the independent likelihoods induced by responses to items 
within each scale, and P(θj|yj, Γ, Σ ) is the multivariate joint density of proficiencies of the scales, 

conditional on the principal components yj derived from background responses, and parameters Γ 

and Σ. The item parameters are fixed and regarded as population values in the latent regression 
modeling stage. 

The basic method for estimating Γ and Σ using the expectation-maximisation (EM) algorithm is 
described in Mislevy (1985) for the single scale case. The EM algorithm requires the computation 
of the mean and variance of the posterior distribution in the equation above.  

After the estimation of Γ and Σ is complete, plausible values are drawn from the joint distribution 
of the values of Γ for all sampled students in a three-step process. First, a value of Γ is drawn from 

a normal approximation to P(Γ,Σ|xj,yj) that fixes Σ at the value  (Thomas, 1993). Second, 

   

S
^
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conditional on the generated value of Γ (and the fixed value of ), the mean mj

p
, and variance 

Σj

p
 of the posterior distribution are computed using the same methods applied in the EM algorithm. 

In the third step, the θ are drawn independently from a multivariate normal distribution with mean 

vector mj

p
 and posterior co-variance matrix Σj

p
. These three steps were repeated 10 times, 

producing 10 imputations of θ for each sampled student.  

The software DGROUP (Rogers, Tang, Lin, and Kandathil, 2006) was used to estimate the latent 
regression model and generate plausible values (von Davier, Sinharay, Oranje, and Beaton, 2006; 
von Davier and Sinharay, 2014). A multidimensional variant of the latent regression model based 
on Laplace approximation (Thomas, 1993) was applied, as PISA reports proficiencies on more than 
two skill dimensions. 

Population modeling in PISA-D  

The following sections provide information about how the population model was applied to the 
PISA-D Main Survey data, how plausible values were generated, and how plausible values can be 
used in further analyses. 

As in the PISA 2015 Main Survey, a minimum of six completed items per domain was necessary to 
assure sufficient information about the proficiency of students. In general, there were very few 
students2 (0.04%) with responses to fewer than six cognitive items in at least one of the main 
cognitive domains. Thus, this two-step procedure was taken: In the first round, respondents who 
responded to at least six items within at least one domain were used to fit the multidimensional 
latent regression models when Γ and Σ were estimated, and in the second round, all respondents, 
including those who responded less than six items, received plausible values fixing the regression 
parameters to the ones obtained from the first run. This procedure ensured that the cases with 
fewer item responses did not contribute to the estimation of the proficiency distribution, but did 
receive the plausible values in the domain that they responded to.  

 

Generating plausible values 

In PISA-D, the computation of group-level reporting statistics involving scores in the main cognitive 
domains was based on 10 independently drawn plausible values for each of the cognitive domains 
for each student. Each set of plausible values was equally well designed to estimate population 
parameters; however, multiple plausible values were required to represent the uncertainty in the 
domain measures appropriately (von Davier, Gonzalez, and Mislevy, 2009). The statistics based on 
scores are always computed at population or subpopulation levels. They should never be used to 
draw inferences at the individual level. Detailed information on the computation and the use of 
plausible values in analyses is given in Rutkowski, Gonzalez, Joncas, von Davier (2010).  

                                                        
2 Note that a student was only considered a “respondent” and given an analysis weight if he or she responded to at 
least one cognitive item and possessed data for the context questionnaire items, or if he or she responded to at least 
half of the cognitive items in cases of providing no context questionnaire information. 

   

S = S
^
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For population modeling and for generating plausible values for three scales of PISA-D, the 
computer program DGROUP (Rogers et al., 2006) was used. A normal multivariate distribution was 
assumed for P(θj|xj, yj, Γ, Σ), with a common variance, Σ, and with a mean given by a linear model 

with slope parameters, Γ, based on the principal components of several hundred selected main 
effects from the vector of context questionnaire variables.  

The background variables included nearly all student questionnaire data, school ID, gender, and 
the number of not-reached items, among others. A description of the different sections of the 
background data can be found in Chapter 3. All variables in the context questionnaire were contrast 
coded before they were processed further in the principal components analysis. Contrast coding 
allows for the inclusion of codes for refused responses, avoiding the necessity of linear coding. 
However, the increased number of variables obtained through contrast coding is substantial. To 
capture most of the common variance in the contrast-coded background questions with a reduced 
set of variables, a principal component analysis was conducted. Because each population can have 
unique associations among the background variables, a single set of principal components was not 
sufficient for all countries included in PISA-D. As such, the extraction of principal components was 
carried out separately by country to take into account the differences in associations between the 
background variables and the cognitive skills. The plausible value variables for the cognitive 
domains follow the naming convention PV1xxxx through PV10xxxx, where “xxxx” takes on the 
following form:  

 READ for Reading Literacy 

 MATH for Mathematics Literacy 

 SCIE for Science Literacy 
 

Students received plausible values for each cognitive domain administered in their country 
according to the test design that was applied in a particular country. This means that students also 
received plausible values for cognitive domains that were not administered to them.  
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